Stochastic Linear Quadratic Optimal Control with Indefinite Control Weights and Constraint for Discrete-Time Systems
نویسندگان
چکیده
منابع مشابه
Optimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملLinear-Quadratic Control of Discrete-Time Stochastic Systems with Indefinite Weight Matrices and Mean-Field Terms
In this paper, the linear-quadratic optimal control problem is considered for discretetime stochastic systems with indefinite weight matrices in the cost function and mean-field terms in both the cost function and system dynamics. A set of generalized difference Riccati equations (GDREs) is introduced in terms of algebraic equality constraints and matrix pseudo-inverse. It is shown that the sol...
متن کاملStochastic optimal LQR control with integral quadratic constraints and indefinite control weights
A standard assumption in traditional (deterministic and stochastic) optimal (minimizing) linear quadratic regulator (LQR) theory is that the control weighting matrix in the cost functional is strictly positive definite. In the deterministic case, this assumption is in fact necessary for the problem to be wellposed because positive definiteness is required to make it a convex optimization proble...
متن کاملLinear quadratic problems with indefinite cost for discrete time systems
This paper deals with the discrete-time infinite-horizon linear quadratic problem with indefinite cost criterion. Given a discrete-time linear system, an indefinite costfunctional and a linear subspace of the state space, we consider the problem of minimizing the costfunctional over all inputs that force the state trajectory to converge to the given subspace. We give a geometric characterizatio...
متن کاملSolvability Conditions for Indefinite Linear Quadratic Optimal Stochastic Control Problems and Associated Stochastic Riccati Equations
A linear quadratic optimal stochastic control problem with random coefficients and indefinite state/control weight costs is usually linked to an indefinite stochastic Riccati equation (SRE), which is a matrix-valued quadratic backward stochastic differential equation along with an algebraic constraint involving the unknown. Either the optimal control problem or the SRE is solvable only if the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/476545